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1. Introduction

Stimulated by the Sen’s conjecture [1], string field theoretical study of tachyon condensa-

tion has been carried out in depth in these several years. In particular, the level truncation

approximation was powerful enough to show numerically the potential depth of the vac-

uum being equal in good accuracy to the D25-brane tension in bosonic open string field

theory [2 – 4].

Almost all of these previous studies are conducted in Siegel gauge which has been

practically unique choice in string field theory for these twenty years. This gauge, however,

is known to show a pathological behavior in effective tachyon potential. Namely, branch

points appear in both side of larger and smaller field values of the tachyon, so that one

was not able to go beyond this small region. Fortunately previous study showed that

perturbative vacuum and candidate true vacuum are both inside this region at available

orders of level truncation, though the higher an approximation went up the smaller its

smooth region became. A preceding study [5] suggested that these behavior came from the

gauge boundary where the gauge slice did not cross the gauge orbit. In order to confirm

these observations and to avoid the problem, new covariant gauges other than Siegel gauge

have been desired for a long time.

The present authors recently proposed [6] a new single-parameter family of covariant

gauges in string field theory which includes Siegel gauge at a special point. This gauge

family is a natural extension of the covariant gauges in ordinary gauge theory to the string

field theory, so that the gauge parameters of them have a natural correspondence with each

other.

The purpose of the present paper is to apply this new gauge to the analysis of the

tachyon condensation in level truncation approximation. We investigate the gauge (in-

)dependence of the previously known behavior of tachyon condensation and show manifestly
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which one is physical or a gauge artifact. It turns out that the tachyon potential behaves

smooth enough in the large range of gauge parameter space. Also in at least level 2

approximation, only two extrema of the potential, one is perturbative vacuum and the

other is the candidate tachyon vacuum, persist independently of the gauge.

It turns out that the Siegel gauge is located in a subtle area where the influence from

the gauge horizon is still too large to obtain the whole shape of the potential, while the

energy of the vacuum does not so much deviate from the gauge independent value.

In the following, after setting up the necessary ingredients for the level truncation

analysis including our gauge fixing conditions, we investigate the effective tachyon potential

in section 2. In particular, gauge dependence of the potential in level (2,6) truncation will

be thoroughly described and the smooth behavior in the Landau-type gauge will be shown.

In section 3 the gauge dependence of the vacuum energy is analyzed. Section 4 is devoted

to the discussions.

2. Setup: the action and gauge fixing conditions

In this section we briefly describe our basic setup for the calculation of the tachyon potential

in level truncation1 and the gauge fixing conditions proposed in ref. [6].

The action for the cubic open string field theory [8] is given by

S = −1

2
〈Φ1, QΦ1〉 −

g

3
〈Φ1,Φ1 ∗ Φ1〉 (2.1)

where Φ1 is the string field of ghost number Ng = 1 and g is the coupling constant. This

action is invariant under the gauge transformations

δΦ1 = QΛ0 + g(Φ1 ∗ Λ0 − Λ0 ∗ Φ1) (2.2)

where the BRST operator Q is given by

Q = Q̃ + c0L0 + b0M (2.3)

with

Q̃ =
∑

n 6=0

c−nL(m)
n − 1

2

∑

mn6=0
m+n 6= 0

(m − n) : c−mc−nbn+m :, M = −2
∑

n>0

nc−ncn. (2.4)

To define the gauge fixing conditions of ref. [6], we write the string field as Φ1 = φ(0) +

c0ω
(−1) such that φ(0) and ω(−1) are expanded by the states without c0. Here the super-

scripts (0) or (−1) denote the ghost number of non-zero modes: Ñg =
∑

n>0(c−nbn−b−ncn).

As was shown in ref. [6], the gauge invariance of the action S for g = 0 is consistently fixed

by the condition

(b0M + ab0c0Q̃)Φ1 = 0 (⇔ Mω(−1) + aQ̃φ(0) = 0) (2.5)

1See review article, e.g. ref. [7], for the fundamentals.

– 2 –



J
H
E
P
0
1
(
2
0
0
7
)
0
2
8

for a real parameter a 6= 1 including a = ±∞. In the following, we deal with all of these

gauge conditions including the a = 1 case to analyze the action S since we have no a priori

reason to exclude a = 1 case unless g = 0. Note that the break-down of each gauge fixing

condition would occur at a certain different region of the configuration space in general.

As described in ref. [6], a = 0 is equivalent to the Feynman-Siegel gauge and a = ∞
corresponds to the Landau gauge for the massless gauge mode.

The gauge fixed action for each of the above gauge conditions contains string fields of

all the ghost number. The string fields with Ng 6= 1 are necessary to incorporate infinite

sequence of ghost and anti-ghost fields introduced in the gauge fixing procedure [6]. We

will, however, set all string fields with Ng 6= 1 to zero in the following since our analysis is

limited to the classical one; We just impose each gauge condition (2.5) on the action (2.1)

and use the result as gauge fixed action for the gauge condition.

In the following analysis, we will concentrate on the analysis of the tachyon condensa-

tion problem and restrict the states in the string field to zero-momentum scalar fields with

even level. This restriction is justified by twist symmetry of the action and the fact that

we only consider Lorentz invariant configurations.2 Under the restriction, the string field

is expanded as

Φ1 = φ|↓〉 +
∑

i

φi|fi〉 + c0

∑

j

ωj|gj〉 (2.6)

where φ is the zero-mode tachyon field with |↓〉 = c1|0〉, |fi〉 and c0|gi〉 are ghost number

1 scalar states of even level, and φi and ωj are corresponding scalar fields. Note that our

gauge fixing condition can be applied consistently on the restricted subspace of the state

space since the condition is covariant and is closed within the states of the same level. Also,

there are relations {Q̃|fi〉} = {M |gj〉} and the isomorphism between {|gi〉} and M{|gi〉}
since L0 = L−1 6= 0 for each state in the subspace with level L. For the general background

of the relations, see ref. [6].

Let Φ
(L)
1 denote the string field (2.6) expanded by the states up to level L. The effective

potential up to level L is given by substituting Φ
(L)
1 into the action (2.1) as

V (L,3L)(φ, {φi}, {ωj}) = −S
(

Φ
(L)
1

)

. (2.7)

The gauge fixed form of the effective potential Va is derived from V (L,3L) by imposing the

gauge fixing condition up to level L, which is obtained by substituting Φ1 = Φ
(L)
1 into (2.5).

For |a| < ∞, all the ωj fields are written by the linear combinations of φi’s. For a = ∞,

only φi fields are restricted by the condition Q̃φ(0) = 0 and we denote by {φ′
i′} the set of

states φi satisfying the condition. Thus, the effective potential for each gauge |a| < ∞ (or

|a| = ∞) is written as a function of (φ, φi) (or (φ, φ′
i′ , ωj)) as

V (L,3L)
a = V (L,3L)

a (φ, φi), V (L,3L)
∞ = V (L,3L)

∞ (φ, φ′
i′ , ωj). (2.8)

In the following, we sometimes represent ψi = φi for |a| < ∞ and ψi = (φ′
i′ , ωj) for |a| = ∞

and write simply V
(L,3L)
a = V

(L,3L)
a (φ,ψi) for every |a| ≤ ∞.

2We do not further restrict to the so called universal subspace [3, 9] whose matter part is limited to the

states |0〉 and its descendants of matter Virasoro algebra L
(m)
−n

.
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Let us take an example of L = 2. The string field up to this level is given as

Φ
(L=2)
1 = φ|↓〉 + φ1(α−1 · α−1)|↓〉 + φ2b−1c−1|↓〉 + ω1c0b−2|↓〉. (2.9)

By substituting this to −S, we obtain the effective potential V (2,6)(φ, φ1, φ2, ω1) in the level

(2,6) truncation. The approximate gauge transformation up to this level is given by the

use of Φ1 = Φ
(L=2)
1 and Λ = λb−2|↓〉 in (2.2). The gauge fixing condition (2.5) up to this

level is represented by an equation

−4ω1 + a(26φ1 + 3φ2) = 0. (2.10)

The effective potential Va for each gauge condition is given by imposing the condition on

V (2,6)(φ, φ1, φ2, ω1) as

V (2,6)
a (φ, φ1, φ2) = V (2,6)(φ, φ1, φ2, ω1 =a(26φ1 + 3φ2)/4), (2.11)

V (2,6)
∞ (φ, φ1, ω1) = V (2,6)(φ, φ1, φ2 =−26φ1/3, ω1). (2.12)

The effective tachyon potential in level (L, 3L) truncation for each gauge a is obtained

by solving equations of motion of Va(φ,ψi) with respect to all the fields except φ as

V (L,3L)
a (φ) = V (L,3L)

a (φ,ψi =ψsol
i (φ)). (2.13)

Here ψsol
i (φ) is a solution of { ∂

∂ψi

Va(φ,ψi) = 0} for a fixed φ. For the level (0, 0) truncation

where the only φ field is concerned, the effective tachyon potential is given by V (0,0)(φ)

itself:

V (0,0)(φ) = −1

2
φ2 + gκ̄φ3, (2.14)

where

κ̄ =
1

3

(

3
√

3

4

)3

.

In general, there exist a number of real solutions ψsol
i (φ) at higher levels and correspondingly

there appear a number of branches for V
(L,3L)
a (φ).

We will analyze the properties of V
(L,3L)
a (φ) in the next section. By the Sen’s conjec-

ture [1], the tachyon effective potential V (φ) should have a non-trivial extremum where

the potential value coincides with minus of the tension of D25-brane (times volume of

space-time)

−T25 = − 1

2π2g2
. (2.15)

We also analyze the gauge dependent properties of the vacuum solution in the level trun-

cation by solving the equations of motion of Va(φ,ψi).

3. Effective tachyon potential

3.1 Detailed analysis in level (2,6)

Up to level 2, we have four fields before gauge fixing and the gauge condition removes one

field, so only three fields (φ,ψ1, ψ2) are relevant. This makes computation much easier, so

that we can study this level to a great extent.
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Figure 1: Effective tachyon potential at various a

First we show the effective tachyon potential at various values of a in figure 1. In each

graph we superimpose the potential (blue curve) onto the physical branch of the potential

for a = ∞ (orange curve) which is helpful to see a common tendency of each physical

branch. Note that throughout all figures we use normalized variables gκ̄φ as “phi” and

V/T25 as “V”.

At a = 4 the potential completely overlaps with the orange curve and this branch is

stable for larger a. The same behavior can be seen in a = −2 in which another independent

branch is also seen. They are stable for smaller a till a = −∞. Thus we may conclude that
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orange curve can be considered as an almost gauge independent physical branch.

Roughly speaking the region −0.5 <
∼ a <

∼ 2.8 is a dangerous zone where it needs multiple

branches to cover the orange curve or good branch ceases at a certain point of φ. It is

clear from the figure that the Siegel gauge (a = 0) is located at the edge of the zone.

The pathological behavior in this region seems to come from the influence of nearby gauge

horizon. For example in free theory (linearized) gauge symmetry is not fixed for a = 1.

After switching on the interaction there still exists a gauge invariance at φ = ψi = 0

configuration. Indeed we can see in the graph for a = 1 that three branches degenerate at

the origin. For the non-zero values of fields a degeneration point would shift from a = 1.

We can estimate the value of a at which the gauge fixing fails around vacuum con-

figuration in the interacting case as follows. The level truncated potential V (2,6) has no

exact gauge invariance even before the gauge condition is imposed, so that we can solve

the equations of motion derived from this action. Then we can find a vacuum solution [9]

of gauge-unfixed action which is located near the vacuum of gauge-fixed case. In the level

(2,6) truncation an approximate gauge transformation has only one parameter since there

is only one state b−2|↓〉 in ghost number 0 sector. Therefore the gauge orbit in this level is

one-dimensional. On the other hand, we have a gauge slice associated to each gauge-fixing

condition with a as a hyperplane in the configuration space. We can easily see that around

a = 1.85 the gauge slice of a becomes parallel to the tangential direction of the gauge orbit

piercing through the gauge-unfixed vacuum point. Indeed there are multiple local minima

near the vacuum at a = 1.8 in figure 1.

Note that in the graph for a = −2 a vertical branch seems to cross the physical branch

near the origin. They, however, do not actually intersect or degenerate since the values of

fields other than φ are different from each other.

Now at this point, one may wonder how wide is the range of φ where the physical

branch at a = ∞ behaves smoothly beyond the one shown in figure 1. So next let us look

at the global structure of branches. In figure 2 we show all the branches at a = ∞ (orange

curve) in broader region. There is one physical branch which is all along the curve of level

0 (black curve) with appreciable correction, while the other branches never intersect to or

degenerate to the physical one. There also shown is the curve of Siegel gauge (blue curve)

which has several branch points on the curve and coincides with a = ∞ curve only in the

small region around gκ̄φ ∼ 1.

3.2 Higher level results

At level 2, we have at most four real branches at fixed φ since we solve two quadratic

equations with respect to two ψi’s. For higher levels we may have enormous number of

branches in principle. So practically we only look for physical branch beyond level 2. We

actually have calculated in level (4,12) and (6,18) truncations at a = ∞ whose results are

summarized in figure 3.

We can see from the figure that the potential shape is quite stable. In particular, for

negative φ the level (2,6) approximation is already quite good and gets little correction

from higher level. The higher level correction is only apparent near the local minimum of

the potential.
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Figure 3: Tachyon potential at a = ∞ in level 0 (black), 2 (orange), 4 (blue) and 6 (rose)

truncations.

Note that the branch structure is seen for (6,18) around gκ̄φ ∼ 0.75 where the branch

coming from lower value of φ starts to deviate and another branch redeems it instead. This

behavior is quite different from the Siegel gauge in which the branch stops at a certain point

and no other branch shows up. In addition, the higher the level goes up the smaller the

effective region of the branch becomes in the Siegel gauge.

4. Gauge independence of the vacuum

Now in this section let us concentrate on the local extremum of the potential, i.e., the

solutions of the equations of motion. In figure 4, we plotted the a-dependence of the

normalized energy of the solutions. All the solutions in the plotted area are shown for

level (2,6) truncation and only vacuum solution for (4,12) and (6,18). We have checked the

other solutions in level (2,6) which have larger absolute values of energy than the plotted

range are highly a-dependent, hence gauge-artifacts.

– 7 –



J
H
E
P
0
1
(
2
0
0
7
)
0
2
8

-2 -1 1 2 3 4
a

-2

-1.5

-1

-0.5

0.5

1
E_vacuum

Figure 4: Energy of the vacuum solution versus a in level 2 (sky), 4 (blue) and 6 (rose) truncations.

Level

(0,0) (2,6) (4,12) (6,18)

a gκ̄φvac Evac/T25 gκ̄φvac Evac/T25 gκ̄φvac Evac/T25 gκ̄φvac Evac/T25

∞ 0.40112 −0.91328 0.40601 −0.94758 0.40785 −0.96094

4.0 0.41188 −0.88520 0.41753 −0.91189 0.42401 −0.92449

0.5 0.33333 −0.68462 0.39843 −0.97704 0.40076 −1.00030 0.40012 −1.00459

0.0 0.39766 −0.95938 0.40072 −0.98782 0.40038 −0.99518

−2.0 0.39828 −0.93477 0.40211 −0.96842 0.40242 −0.97989

Table 1: The field value and the energy of tachyon vacuum for various a.

We see from the figure that away from the dangerous zone the vacuum solution is

gauge independent quite stably, so that the choice of solution is justified. The dangerous

zone is slightly narrower than the potential analysis in the previous section. This is because

only extrema are relevant here while the potential should be defined for any values. In this

sense the Siegel gauge is not safe for almost all the value of φ but around the vacuum.

In order to see how higher-level corrections affect the vacuum energy, the part around

the normalized energy ∼ −1 is magnified in figure 5. The energy value at a = ∞ in each

level truncation is shown as a spot in both side of the graph.

At first sight the energy value of Siegel gauge (a = 0) is lower than that of a = ∞. We

should, however, deliberate on it since we obtain even lower value than the Siegel gauge as

we approach the dangerous zone. In fact for a = 0.5 where we have very similar behavior

of the potential as for the Siegel gauge, the energy value overshoots the desired value −1

(see table 1), which is also known for the higher level analysis in Siegel gauge [10]. It will

be interesting to see whether the same phenomenon happens or not in much higher level

for a = ∞.
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Figure 5: Magnified view of figure 4 around the energy ∼ −1. Leftmost and rightmost points are

the values at a = ∞.

5. Discussions

We have analyzed the tachyon condensation in the level truncation approach by the use

of new covariant gauge. As we have seen in section 3, if we take the gauge parameter

a sufficiently away from the dangerous zone, the tachyon potential has a well-behaved

physical branch which is all along the level 0 potential with an appreciable correction. In

the same region the tachyon vacuum solution is almost gauge independent. The Siegel

gauge (a = 0) is turned out to be on the edge of dangerous zone, so that we should be

careful about its validity depending on the field value.

We suggest that the a = ∞ gauge is quite stable and reliable. As is shown quite

generally in ref. [6] the action is largely simplified in this gauge, so that not only numerical

analysis but also analytic investigation may be promising. Indeed the number of terms in

the action of scalars at a = ∞ is roughly 80 percent of that of Siegel gauge in each level.

Even if we include derivative terms in order to study space-time dependent solutions,

still a = ∞ gauge has a simple structure, since ωj’s have no derivatives in their kinetic

terms. Note that a = ∞ gauge condition does not touch ωj’s while the Siegel gauge removes

all ωj’s. Hence it is clear that the former has great advantage over the latter in the space-

time dependent analysis. In this regard, recent progress on the analytic solution [11] is

quite interesting where the choice of the gauge is the key to find a closed subset in string

field space under the operation of Q and ∗-product. The new gauges examined in the

present paper or their variants might be useful to extend the analytic study to lump or

other solutions.

Final words should go to the approximate BRST invariance [12] which measures the

approximate gauge invariance at a chosen gauge slice. Apparently the a-independence of

the solution is closely related to the BRST invariance even in the level truncation. So it

might be interesting to compare these two numerically in varying a.
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